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Abstract
Understanding and communicating data uncertainty is crucial for making informed decisions in sectors like finance and
healthcare. Previous work has explored how to express uncertainty in various modes. For example, uncertainty can be expressed
visually with quantile dot plots or linguistically with hedge words and prosody. Our research aims to systematically explore
how variations within each mode contribute to communicating uncertainty to the user; this allows us to better understand
each mode’s affordances and limitations. We completed an exploration of the uncertainty design space based on pilot studies
and ran two crowdsourced experiments examining how speech, text, and visualization modes and variants within them impact
decision-making with uncertain data. Visualization and text were most effective for rational decision-making, though text
resulted in lower confidence. Speech garnered the highest trust despite sometimes leading to risky decisions. Results from
these studies indicate meaningful trade-offs among modes of information and encourage exploration of multimodal data
representations.

CCS Concepts
• Human-centered computing → Human computer interaction (HCI); Empirical studies in HCI; Empirical studies in visual-
ization;

1. Introduction

In today’s world of data-driven decision-making, effectively com-
municating the uncertainty inherent to the underlying information
is important [Dra95]. Data uncertainty refers to the range of poten-
tial outcomes, variability within a dataset, or possible error in mea-
surements or predictions [MH90]. While precise data may be ideal
for making decisions, such data is uncommon in real-life decisions.
Communicating uncertainty can allow for a better understanding
of the true state of the data. However, recognizing and effectively
communicating data uncertainty poses several challenges.

A key challenge in data uncertainty is interpretation. While ex-
perts might understand statistical nuances like confidence intervals
or p-values, a lay audience might misread these indicators and make
incorrect conclusions [SPS11]. This misinterpretation significantly
affects decisions in vital areas like medicine, finance, and pub-
lic policy [MDL08]. Conveying data uncertainty also affects trust,
at times enhancing it [SSR21, SSK∗16]. However, uncertain data
might also lead the audience to view the information as unreliable;
despite uncertainty being a normal part of data analysis [CJTD21].

Researchers have developed various methods to assist in under-

standing statistical uncertainty. Visual tools like error bars, confi-
dence intervals, and density plots illustrate data variability, scope,
and distribution [MRH∗05,PKH21]. In written texts, uncertainty is
indicated through the use of hedge words such as “somewhat” and
“possibly” [Lak73, DH01]. In spoken communication, additional
features like pitch and speech rate can signal a speaker’s uncer-
tainty or hesitation [BW95, SLW73, SK05].

There are tradeoffs, however, in the effectiveness of each mode
of communication in conveying uncertainty. Viewers may not pos-
sess sufficient graphical literacy to understand complex visualiza-
tions [MRH∗05], and textual explanations may be necessary to
clarify visual nuances. On the other hand, readers might not follow
lengthy explanations, resulting in limited comprehension [Sch97].
Finally, the transient nature of speech limits the ability to revisit
information compared to text or visualizations [SW95].

Determining how speech, text, or visualizations present infor-
mation requires a nuanced understanding of how readers interpret
information in each mode. A careful exploration of each mode can
help identify effective techniques for data communication. As mul-
timedia representations beyond visualizations emerge, it is impor-
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tant to develop a clear understanding of how other modes of infor-
mation compare to visual representations.

Contributions. To this end, we explore representations of data un-
certainty (speech, text, and visualization) along a spectrum of con-
creteness to fuzziness to help identify effective strategies and trade-
offs in communicating data uncertainty for decision-making. Two
pilot studies outline a detailed design space for communicating data
uncertainty. We focus specifically on unimodal representations to
first understand what each mode can uniquely offer, an essential
step before we can understand the implications of multimodality.

We conduct a comparative analysis of the efficacy and effects of
these modes and fuzziness within each one, using two experiments.
While this analysis partially replicates the methods of previous
work, it also allows for direct comparison across modalities, lead-
ing to new findings. Unlike prior work, we examine these modes
under a unified framework and uniform experimental conditions.

The results indicate a high degree of trust in speech representa-
tions despite relatively irrational decision-making and a low rating
of confidence in decisions made with text representations despite
relatively rational decision-making.

2. Related Work

Our work builds on research in communicating uncertainty in data
visualization, text, and speech, as well as decision-making.

2.1. Communicating Uncertainty in Data Visualization

Developing techniques for data visualization to address data un-
certainty is an important research problem, as the interpretability
of uncertain data can significantly impact decision-making [JS03,
Hul16, PCH21] in domains such as climate and geospatial mod-
eling [MRH∗05, Pan01, KCG15, NCA∗19, DM20, WLWC23],
medicine [RPHL14, HSSV22], and business intelligence applica-
tions [VKKG17]. For example, employing point estimates as part
of uncertainty communication has been found to improve decision-
making in contexts such as weather and transit. Surveys of uncer-
tainty visualization [BHJ∗14,PKH21,SLSR08] and tools [JED∗20]
for exploring the various approaches underscore the extensive
scope and impact of research.

Important research has explored information visualization tech-
niques for communicating uncertainty. Thomson et al. [THM∗05]
present a typology of uncertainty, delineating kinds of uncertainty
matched with space, time, and attribute components of data. These
concepts from visual semiotics are applied to characterizing visual
signification appropriate for representing different categories of un-
certainty [MRO∗12]. Research findings generally indicate that en-
hancing visualizations and data together with their uncertainty in-
formation improves users’ understanding of complex information.

Some visualization techniques can better support data uncer-
tainty. Görtler et al. [GSWD17] introduce bubble treemaps that en-
code uncertainty using wave-like modifications and blur effects.
Sane et al. [SAJ21] extend univariate confidence isosurfaces to
multivariate feature level sets and visualize regions with uncer-
tainty in relation to the specific trait or feature. Ensemble datasets

contain a collection of estimates for each simulation variable, and
ensemble visualizations representing a sample of projections better
support understanding of data uncertainty [LBR∗16, PRCR17].

2.2. Communicating Uncertainty in Text

Communicating uncertainty in text draws from research in
linguistics, human-computer interaction, and information sci-
ences [Tou03]. Much of this work examines words and phrases that
signal uncertainty in text, often called hedges. Hedges indicate de-
grees of uncertainty and concreteness, such as ‘sort of,’ ‘perhaps,’
‘might,’ and ‘could be’ [Lak73, DH01, SVF∗12, RLK06]. These
words can indicate various kinds of uncertainty, e.g., probabilities
for future events, matters of opinion, and information that is open
to multiple interpretations [SVF∗12, DH01].

Computational linguistics research has implemented techniques
for identifying hedging patterns to determine their effectiveness in
communicating a particular point of view to the reader [IXM20,
GCBR∗21]. Hedge words decrease the perceived soundness of an
argument [BH05, SC93] and the credibility of the author [SAC98].
Accordingly, participants are more likely to be persuaded by an ar-
gument without hedges [DBRS08]. However, this finding may in-
teract with how much confidence might reasonably be expected; de-
scriptions of medical research are rated as more trustworthy when
they include hedges [Jen08]. The presence of hedges is often de-
termined by inherent data uncertainty, as occurs in predictions of
probabilistic future events [SVF∗12, DH01].

2.3. Communicating Uncertainty in Speech

In addition to the same lexical and semantic factors that are often
studied in written text, the acoustic characteristics of speech pro-
vide an additional dimension to communicating uncertainty.

Confidence is correlated with faster speech [SLW73, SC93,
BW95], higher intensity [SLW73], and fewer, shorter pauses
[SLW73]. Confident utterances are also more likely to exhibit
falling intonation, while uncertain utterances are more likely to ex-
hibit rising intonation [SC93, BW95, SK05]. Some studies find a
lower pitch with more confident utterances [JP15], while others find
a higher pitch [SLW73]. These acoustic cues can also influence lis-
teners’ perception of a speaker’s certainty. Perceived confidence in-
creases with faster speech rate [BW95,PBS11,GFVJ19,KLSG22],
higher intensity [JP17], lower pitch [JP17, GFVJ19, KLSG22],
falling pitch [BW95, LW10, GFVJ19], fewer and shorter pauses
[LW10, PBS11, JP17]. Predictors of perceived confidence have the
same effects in synthetic speech [KLSG22].

Most of the existing work on the relationship between certainty
and acoustic characteristics of speech addresses the speaker’s con-
fidence, e.g., based on instructions to speak confidently or doubt-
fully [SLW73, JP15] or when answering trivia questions that they
feel more or less confident about [SC93, BW95]. The work in per-
ception of these acoustic characteristics similarly asks listeners to
evaluate how confident a speaker sounds [BW95, PBS11, JP17,
KLSG22], rather than evaluating certainty of the information itself.

In contrast, our work examines how acoustic characteristics,
such as changes in speech rate, pitch, and pauses, might influence
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listeners’ understanding of the uncertainty in probabilistic data and
the way that they make decisions based on that data.

2.4. Decision-making and Reasoning with Uncertain
Information

Perceived uncertainty and reliability of incoming information can
influence the decisions that people make based on that informa-
tion [HQC∗19]. For instance, people are also more likely to seek
more information when they are less confident in their decision
about it [DBY18].

There is evidence that some uncertainty visualizations (i.e., dot
plots, probability density functions) allow people to better aggre-
gate across varying estimates [GJS∗18]. Kim et al. [KWKH19,
KKGMH20] looked into Bayesian reasoning scenarios, examining
how different visualization techniques affect users’ interpretive ac-
curacy. Other research found that inferential uncertainty led to more
overestimation of effect sizes than visualizations that show out-
come variability [HGH20]. When uncertainty visualizations em-
phasize arithmetic means, users overlook uncertainty information
and misinterpret visual distance as a proxy for effect size [KKH21].

Research has studied users’ decision-making processes for spe-
cific domains. Korporaal et al. investigated how data uncer-
tainty in maps might influence the process of spatial decision-
making [KRF20]. Viewing COVID-19 visualizations with rising
trends increased participants’ beliefs that they and others were at
risk [PHF∗22]. More salient visualizations of uncertainty may lead
to decreased willingness to follow COVID-19 forecasts [LM21].

In linguistically signaled uncertainty, the degree of confidence
expressed in text or spoken utterance also influences decision-
making. People are more likely to be persuaded by an argument that
is expressed with moderate confidence than one that is expressed
with very low or high confidence [LMT71]. Statements with mod-
erate confidence are also rated as being more credible [CBD09].

Specific acoustic correlates of confidence have been found to
predict how listeners handle information; arguments given at faster
speech rates are perceived as more credible and are more likely
to persuade listeners than arguments with slower speech rates
[MMBV76, MW69]. Higher intensity and more variation in inten-
sity are also positive predictors of how persuasive an utterance will
be [VZB20]. Lower pitch produces more positive attitudes towards
the message being communicated [CDRS03].

3. Research Goals

The complexity of uncertain data necessitates the careful presen-
tation and communication of information. Different modes of data
representation can present different kinds of information with trade-
offs in their effectiveness for communicating uncertainty. For ex-
ample, speech information contains signals beyond what text alone
can provide - the pitch and duration of certain words can commu-
nicate nuances that text cannot. Visualizations provide more infor-
mation than can be concisely represented in text or speech formats.

Our work aims to guide the effective use of these modes and
provide insight for future work in multimodal uncertainty commu-
nication as well as situations where visual representations may not

be feasible or useful to a given audience. We are specifically inter-
ested in the following research questions:

• RQ1: How does the mode of information presentation affect
decision-making with uncertain data?

• RQ2: How does decision-making change when indicators of un-
certainty are intensified within each mode of communication?

We explored the design space of uncertainty representation in
each mode of information, determining factors that increase per-
ceptions of uncertainty. We then conducted two crowdsourced
experiments. The first experiment compared how three different
modes (speech, text, and visualization) communicate uncertain in-
formation. The second experiment compared decisions within each
mode when those indicators of uncertainty were heightened.

4. Design Space of Visualization, Text, and Speech Stimuli

As part of investigating differences between modes of communi-
cation, we varied the stimuli within each mode on a scale from
concrete to fuzzy, adapted from Setlur & Cogley [SC22].

Vagueness or fuzziness occurs when the boundaries of mean-
ing are not precisely defined, leading to ambiguity and multiple
possible interpretations. Fuzziness is often unavoidable when dis-
tinctions are gradient rather than clear-cut categories. Concreteness
refers to a specific, clear, and unambiguous concept. Concrete rep-
resentation relies on definite and precise terms that clearly delin-
eate their meaning, leaving little room for ambiguity. Both concepts
play a crucial role in communication, with fuzziness allowing for
flexibility and adaptability, while concreteness ensures clarity and
precision [Sor97,SC22]. In the context of this paper, we use “preci-
sion level” to refer to the variable capturing the fuzziness of stimuli.

While there has been work on basic representations of uncer-
tainty for each mode, as detailed in Section 2, we expand that de-
sign space to include parameters of vagueness and uncertainty to
better understand their influence on uncertainty communication and
decision-making. We considered three main visualization types:
beeswarm plots, quantile dot plots, and density plots, based on an
informal survey of commonly used uncertainty visualizations and
insights from previous research [KKHM16, FWM∗18, PPKH21].
We varied components of these visualizations, including fuzziness,
opacity, and arrangement [PKH21]. We also included a variation in
color, rendering the visualizations in orange, rather than gray (e.g.,
a density pot with an orange fill) [SJW00, TT14]. We analyzed a
total of 21 visualizations, including two beeswarm plots, 10 den-
sity plots, five quantile dot plots, and four combinations of density
and dot plots. Density plots are a common depiction of uncertainty,
but we also investigated variations in frequency-based visualiza-
tions by adjusting the number of quantiles, color, and the overlap
of other plot types. This resulted in a set of 21 different visualiza-
tions illustrating the design space we were interested in exploring.

For text variants, we considered the frequency and visual treat-
ment of hedge words as well as the overall tone. Hedge words
are key indicators of uncertainty in language, and this uncertainty
may be emphasized by using uncertain visual appearances. We also
included a “colloquial” condition, which used more informal lan-
guage and everyday conversational expressions. We considered two
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Table 1: Stimulus categories and examples for Experiment 1 (2× 3 study design). Hedge terms in the fuzzy text template are bolded to
highlight the differences here but did not receive any visual treatment within the experiment.

Concrete Fuzzy

Visual

Text The most likely temperature low tonight is [mean]ºF.
There is a 50% chance that the temperature will fall
between [50% interval min] and [50% interval max]ºF.
While the range of possible lows spans [min] to
[max]ºF, those extremes are less likely. It is also
[significantly/no modifier/somewhat/slightly] more
likely to be [warmer than cooler/cooler than warmer]
within that range.

The most likely temperature low tonight might be around
[mean]ºF. There is a 50% chance that the temperature could fall
between [50% interval min] and [50% interval max]ºF. While
the range of possible lows could potentially span [min] to
[max]ºF, those extremes seem less likely. It also appears
[significantly/no modifier/somewhat/slightly] more likely to be
[warmer than cooler/cooler than warmer] within that range.

Speech Baseline Speech (MP3 Link) 0.2s delay prior to numerical value, 65% speed on numbers,
70% speed on hedge or likelihood terms, 5% pitch decrease on
numbers and hedge or likelihood terms (MP3 Link)

Table 2: Stimulus categories and examples for Experiment 2. Cells with a light gray background indicate stimuli that overlapped with
Experiment 1 (E1). A sample of the text stimuli is provided, and visual treatments shown here were applied to the stimuli in the survey.

Most Concrete Somewhat
Concrete

Mixed Somewhat Fuzzy Most Fuzzy

Visual

Text
(Sample)

The most likely
temperature low
tonight is [mean]ºF.

The most likely
temperature low
tonight might be
[mean]ºF.

The most likely
temperature low
tonight might be
around [mean]ºF.

The most likely
temperature low
tonight could
potentially hover
somewhere around
[mean]ºF.

The most likely
temperature low
tonight could
potentially hover
somewhere around
[mean]ºF.

Speech Concrete Text, No
Modifications
(MP3 Link)

Concrete Text, E1
Modifications
(MP3 Link)

Fuzzy Text, No
Modifications
(MP3 Link)

Fuzzy Text, E1
Modifications
(MP3 Link)

Fuzzy Text, E1
Modifications and
Question Contour
(MP3 Link)

visual treatments: italics and gray text. This resulted in a set of 15
text variants. The speech design space was defined by variations
in the duration of words and pauses, absolute pitch, and pitch con-
tour. We selected these features as acoustic correlates of uncertainty
found in earlier work (see Section 2.3). We included variations in
the content of the speech, resulting in 13 total variants.

To investigate these variants and identify a manageable design
space of parameters for our experiments, the two pilot studies were
conducted on Prolific [PS18], the first with 20 participants and the
second with 40. Participants were fluent in English, had an approval

rate above 95%, and had normal color vision. They were introduced
to the concepts of “concrete” and “fuzzy” information.

Participants ranked sets of stimuli on a scale from concrete to
fuzzy. The first pilot tested nine sets (4 visualization, 2 text, 3
speech), and the second pilot tested seven (4 visualization, 1 text,
2 speech). Since we could only make direct comparisons between
stimuli in the same ranking set, we used the second pilot to com-
pare new stimuli combinations, primarily narrowing the visualiza-
tion sets. Participants initially completed a practice ranking where

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://osf.io/3etjq?view_only=78ba00b533b0485f9ba385e8f719693a
https://osf.io/gufh9?view_only=78ba00b533b0485f9ba385e8f719693a
https://osf.io/dnpa8?view_only=78ba00b533b0485f9ba385e8f719693a
https://osf.io/tvpur?view_only=78ba00b533b0485f9ba385e8f719693a
https://osf.io/rnf4u?view_only=78ba00b533b0485f9ba385e8f719693a
https://osf.io/rwga8?view_only=78ba00b533b0485f9ba385e8f719693a
https://osf.io/nhv5y?view_only=78ba00b533b0485f9ba385e8f719693a


C. Stokes, C. Sanker, B. Cogley, & V. Setlur / From Delays to Densities 5 of 14

the items guided their rankings (e.g., “This item should be ranked
first”). These rankings also served as a response quality check.

These pilot studies provided information to operationalize preci-
sion within individual communication modes. This method is not
sufficient to standard uncertainty between the different modes but
instead assesses the impact of varying signals of uncertainty within
each mode affect perceptions of fuzziness. These pilot studies en-
sured that we selected experimental stimuli with perceptible varia-
tions, which effectively varied the uncertainty signals in each mode.

In selecting stimuli for the experiments, we carefully evaluated
stimuli based on their average fuzziness rankings from the pilot
studies. To do this, we placed the variants for each mode in their rel-
ative position on a spectrum and discussed the set of possible stim-
uli as a team. We chose stimuli that represented a range of most to
least fuzzy, used diverse techniques in depicting uncertainty, were
still within the realm of practical representations, and had basis in
prior literature. This variety ensured a resulting set of stimuli with
different precision levels and methods of representing fuzziness.

4.1. Visualization Stimuli

In the first pilot, participants perceived the quantile dot plot as
fuzzier than the density plot. Their qualitative responses indicated
they were unfamiliar with quantile dot plots. In the second pilot,
after providing an explanation for quantile dot plots, participants
ranked them as more concrete than density plots. The use of or-
ange did not alter fuzziness rankings, but a lighter gray was ranked
fuzzier than a darker gray. Gradient fills and sketchy styles height-
ened fuzziness as well, consistent with known visualization uncer-
tainty encoding methods [MRO∗12, FPS∗21, WII∗12].

For Experiment 1 (E1), we selected stimuli representative of the
kinds of information displays often used in practice. We informally
surveyed uncertainty visualizations in media and news reporting
and incorporated feedback from a co-author with 15+ years of ex-
perience as a visualization designer. After this discussion, we se-
lected the dark gray density plot, a common uncertainty representa-
tion, and the 20-quantile dot plot. While quantile dot plots required
explanation to understand, prior work has indicated that they are an
effective way to communicate uncertainty in a direct or frequency-
based way [FWM∗18, KKHM16, PPKH21]. These were represen-
tative of visualizations studied in prior work and displayed a differ-
ence in fuzziness ratings. For Experiment 2, we expand the range
of fuzziness examined to include the beeswarm chart, a gradient
density plot, and a density plot with a sketched style.

When creating these stimuli, we selected data from a normal dis-
tribution, using the rnorm function in R (v4.3.1) [R C21]. We se-
lected 100 data points from a normal distribution with a standard
deviation of 1 [PPKH21]. True standard deviations ranged from
0.89 to 1.13. Averages ranged from 29.95 to 34.18ºF. This vari-
ation allowed a more ecologically valid set of distributions while
still maintaining comparability; natural data will often not be per-
fectly normally distributed. Unless otherwise noted, all visualiza-
tion stimuli were created using the ggdist package in R [Kay23]
with additional Figma modifications for the gradient and sketched
designs. Stimuli code is included in supplementary materials.

4.2. Text Stimuli

In text stimuli, more hedge words and visual emphases, like italics
or gray color, increased perceived fuzziness. Stimuli with a collo-
quial tone received similar rankings as variants which used a more
formal tone with a medium amount of hedge words. Interestingly,
a passage with fewer but emphasized hedge words was ranked on
average as fuzzy as one with more hedge words.

In Experiment 1, we selected the variants without hedges and
with medium hedging. In Experiment 2, we expanded this range to
include minor, substantial, and italicized substantial hedging. Text
stimuli contained the most likely temperature (the rounded mean
value), the middle 50% range, the rounded minimum and maximum
value, and a description of the distribution skew, calculated using
skewness in the moments package in R [KN22].

4.3. Speech Stimuli

When ranking speech stimuli, increased and decreased pitches were
viewed similarly, but a 10% pitch change was slightly fuzzier than
a 5% change. However, 55% of participants in the first pilot did not
rank 0% and 10% pitch changes differently. Pitch contour was the
most evident fuzzy indicator, followed by delay, then average pitch.
Minor delays were perceived similarly to no delays, and significant
delays matched E1 delays. Layering speech modifications, such as
combining pitch with delay, consistently amplified fuzziness.

For Experiment 1, we selected the default output with concrete
text and a variant with delays, reduced rates, and minor pitch de-
creases with fuzzy text. The speech alterations applied only to num-
ber and/or hedge words. In Experiment 2, we added variants to fur-
ther capture the impact of content and speech attributes, including
concrete text with E1 modifications, fuzzy text with no modifica-
tions, and fuzzy text with E1 modifications and question contour.
As some acoustic correlates of uncertainty are also correlates of
emphasis, we used a lower pitch modification to use the acoustic
cues as signaling uncertainty rather than emphasis; a higher pitch
is a main correlate of emphasis [LP84, KS11], but results for its
relationship to confidence are varied [JP15, SLW73]. Speech stim-
uli were created using Google Speech Synthesis Markup Language
(SSML) [Goo23], a standardized markup language that allows ad-
justments in synthesized speech. Experiment 1 stimuli are shown
in Table 1, and Experiment 2 stimuli are shown in Table 2.

4.4. Discussion

In this work, we mapped out a design landscape focused on the
transmission of data uncertainty through various modes, examining
how various techniques and visualization types influence the user’s
perception of uncertainty. This exploration of the design space pro-
vides two tangible contributions to the study of data uncertainty.

Signals of uncertainty. Through these pilot studies, we identified
and analyzed signals of uncertainty not evaluated in prior uncer-
tainty research, such as text color and formatting. While prior work
has outlined the mechanisms for emphasizing uncertainty in visual
representations [PKH21], it has not assessed how uncertain those
representations appear to readers. These pilot studies demonstrate
one approach to comparing data representations and mechanisms
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of uncertainty. The findings from this design space exploration of-
fer valuable guidance for professionals and further insight into the
use of various techniques to emphasize uncertainty.

While the evaluation completed here was sufficient to select di-
verse, meaningful, and practical representations of uncertainty for
the following experiments, future research should explore a more
explicit and validated measure of how people interpret and react to
uncertainty cues, including a clear mapping of perceptual thresh-
olds across modes. Standardizing levels of fuzziness could provide
more precise comparisons and a clearer understanding of how scal-
ing uncertainty impacts decision-making across modes.

Implications for education. Our study highlights the crucial role
of providing explanations for visual representations of uncertainty,
underscoring the need for strategies that teach individuals how to
interpret these visualizations effectively. This insight highlights the
important use of clear and accessible explanations alongside visual-
izations and opens several avenues for future research and develop-
ment in educational strategies and tools. Future research should fo-
cus on developing educational materials and methods that enhance
comprehension of visual uncertainty, exploring which explanations
are most effective for different audiences, and how these teachings
can be integrated into various learning environments.

5. Experiment Overview

In Experiment 1, we compared six combinations of information
modes (speech, text, visualization) and precision (concrete, fuzzy)
for a 3× 2 mixed-design study with the decision-making task. In
Experiment 2, we examined the same three modes but with addi-
tional stimuli varying in precision. Understanding the unique capa-
bilities of each mode is vital before we can assess how to merge
them effectively in practical settings. This work provides a bet-
ter understanding of how to approach situations where visualiza-
tions may not be effective and what alternatives could be employed
in those instances. This dual focus not only maps out part of the
space of unimodal representations but also guides the selection of
the most appropriate communication mode based on the context.

The two experiments used a consistent decision structure from
prior work [JL12, PPKH21, NGJ09, SJ13]. Participants were pro-
vided a data-driven task to decide whether to salt the road based on
the evening’s low-temperature forecast. This task was recognizable
and relevant to participants, yet not so personal as to introduce sub-
jective bias in their decisions. An objective, rational choice existed,
determined by the cost and penalty values in the experiment.

Participants were presented with the following scenario: “In cold
weather, roads may need to be treated with salt to prevent icing.
This salt treatment is costly but not as costly as damages caused
by ice forming on roads. You are in charge of a road maintenance
company contracted to treat the roads in a U.S. town with salt to
prevent icing. It is your job to apply salt to the roads when the
temperature is at or below 32ºF to prevent ice from forming.”

Participants were provided a fictional budget of $12,000 to com-
plete 12 trials. Applying salt cost $1,000, and the penalty for road
freezing was $3,000. Based on these values, the objectively rational
choice was to salt when the chance of the temperature falling below

32ºF was at or above 33%. Participants received a $0.05 bonus for
every $1,000 left in their budget at the end of twelve trials.

These experiments evaluated decision-making within this con-
text, including confidence in the decisions and trust in the forecast.
Participants’ confidence levels shed light on their personal feelings
during the decision-making process, as well as some insight into
the perceived quality of their decision. As trust may alleviate the
hesitations and doubts inherent in uncertain scenarios, collecting
this information is key to a more comprehensive understanding of
the trade-offs between different information modes.

Confidence was assessed by asking participants to indicate the
chance that their choice was correct, ranging from 50% to 100%
[TKH08] (“How confident are you that you made the correct
choice?”). We used a multi-item measure for “trust,” consisting of
usefulness, clarity, and accuracy [EGKX22, XPGF19, PMCO23].

5.1. Participants

For both Experiments 1 and 2, we utilized the G*Power software
[FELB07, FEBL09] for power analysis, aiming to achieve a power
of 0.95 with an alpha threshold of 0.05. For Experiment 1, we es-
timated an effect size of 0.2 based on pilot studies and previous
research [JL12, PPKH21]. For Experiment 2, we estimated an ef-
fect size of 0.15 based on the results from Experiment 1. Based on
the power analysis, the necessary sample size was 105 participants
for Experiment 1 and 129 participants per mode for Experiment 2.

Participants were recruited via the Prolific platform [PS18]. Par-
ticipants were omitted for irrelevant free-response answers. We also
used an attention check for every trial, which queried the likelihood
of a value falling outside the forecast’s distribution range and thus
with an expected likelihood of 0%. If participants estimated a like-
lihood above 50%, we discarded all their data. We set this threshold
at 50% rather than lower in order to accommodate potential chal-
lenges in probabilistic reasoning in text and speech scenarios.

To account for potential unusable responses, we recruited 20
more participants for each study than the power analysis indicated
was necessary. 130 participants were recruited for Experiment 1,
and 450 participants (150 per mode) were recruited for Experiment
2. The task took about 18 minutes, and participants received a pay-
ment of $3.60. After exclusions, this resulted in 109 participants in
Experiment 1. In Experiment 2, there were 128 participants in the
speech condition, 132 in the text condition, and 136 in the visual-
ization condition. Participants shared their age range and education;
the demographic patterns are provided in supplementary materials.

5.2. Task Design

Experiments 1 and 2 used the same set of tasks. Participants were
randomly assigned to a condition and then introduced to both the
task and their assigned forecast type. This introduction explained
potential decision outcomes and specifics of the assigned forecast.
For those in the visualization group, there was a brief guide on in-
terpreting the visual. Those in the speech group were informed they
could replay the forecast multiple times if necessary. After this in-
troduction, participants went through 12 randomized trials. In each
trial, participants viewed a forecast, made a decision, rated their
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confidence, estimated the evening’s temperature and the likelihood
of freezing, and answered the attention check.

Following the 12 trials, participants evaluated the forecast type
they had been exposed to, assessing its clarity, accuracy, and useful-
ness. They also answered open-ended questions on their decision-
making strategy and what they liked/disliked about the forecast.
Participants also completed a four-question measure of graphical
literacy [OJGW19,BXF∗20,CQHP21]. The survey concluded with
demographic questions collecting age range and education level.
Additionally, participants ranked their preferred way to receive in-
formation, choosing between visual (visualizations, images), writ-
ten (books, articles), or audio (podcasts, radio broadcasts).

5.3. Analysis

Methods and analyses were preregistered on OSF for both Experi-
ment 1 and Experiment 2. The analyses presented here deviate from
preregistration; the initial plan included models with demographic
variables that, upon further reflection and feedback, were not tied to
specific hypotheses. As such, we adjusted our approach to evaluate
only those models that incorporated directly relevant variables.

Both experiments investigated four dimensions of decision-
making: the crossover temperature or turning point for the decision,
the rationality of the decision, participants’ confidence in their de-
cision, and their overall trust in the information provided. Most
of the results are based on mixed effects regression models us-
ing the lmer package in R, with model output generated by the
stargazer package [Hla22]. Results for decision rationality are
based on χ

2 tests. All analysis materials, including full model re-
sults and statistical tests, are reported in supplementary materials.

6. Experiment 1: Evaluation of Modes for Uncertainty
Decision-making

The goal of Experiment 1 was to examine RQ1: How does the mode
of information presentation (speech, text, and visualization) affect
decision-making with uncertain data?, and how signals of uncer-
tainty (precision) within each mode affect participant decisions.

6.1. Hypotheses

People process information provided in text differently than speech
[FGG90, KKS∗75]. Using text, probabilities expressed with hedge
words produce more conservative decisions than numeric proba-
bilities [NGJ09]. For predictions using likelihood intervals, text is
more effective than visualizations [SJ13]. However, visualizations
typically outperform text in both challenging [CBK∗16] and sim-
pler tasks [MLB∗20]. Prior research found that visualizations al-
lowing frequency reasoning, like quantile dot plots, resulted in bet-
ter decisions and higher confidence than those that did not, such
as density plots [KKHM16]. For each of the decision dimensions
listed in Section 5.3, we assessed the effects of information mode
(speech, text, or visualization) and precision (concrete vs. fuzzy).

Determining crossover temperature. First, we evaluated the
crossover temperature. Crossover temperature is the turning point
temperature at which participants were equally likely to salt or not

salt. The optimal crossover temperature is the point at which it be-
comes rational to salt the roads, determined by first identifying the
freeze probability at which participants would ideally start salting,
which is equivalent to the Cost:Penalty ratio (1:3 or 33%.) If the
provided data suggested a freezing likelihood above 33%, salting
the roads becomes the rational choice. We calculated the crossover
temperature for each distribution by determining the mean value at
which the distribution had a 33% chance of 32ºF or below. Optimal
crossover temperatures ranged from 32.3 to 32.6ºF.

H1a: Visualization forecasts have a crossover temperature closest
to optimal, followed by text, then speech. H1b: Concrete forecasts
have a crossover temperature closer to optimal than fuzzy forecasts.

Decision rationality. H2a: Visualization forecasts have more ratio-
nal decisions than text or speech. No difference between text and
speech. H2b: Concrete forecasts have more rational decisions than
fuzzy forecasts.

Decision confidence. H3a: Visualization forecasts have the highest
confidence ratings, followed by text, then speech. H3b: Concrete
forecasts have higher confidence ratings than fuzzy forecasts.

Trust in forecast. Finally, we examined trust ratings. As trust is a
complex process, we examined three dimensions of trust: useful-
ness, clarity, and accuracy [EGKX22,XPGF19]. Visual representa-
tions afford probabilistic reasoning more than their text and speech
counterparts. This increased information may increase clarity and
perceived reliability. A concrete representation may also increase
clarity and reliability in comparison to a fuzzy representation.

H4a: Visualization forecasts have the highest trust ratings, followed
by text, then speech. H4b: Concrete forecasts have higher trust rat-
ings than fuzzy forecasts.

6.2. Results

In general, participants performed well in the decision-making task,
with $2,531 remaining on average. Most participants played the
speech stimuli only once (72% of trials). The results indicated that
both visualizations and text supported rational decision-making,
but text led to lower confidence ratings. Speech, while associated
with riskier decisions, led to higher trust ratings than the other two
modes. Precision did not appear to have an impact on decisions.

6.2.1. H1: Decision Crossover Temperature

H1a and H1b were evaluated with logistic mixed effects models
predicting the binary salting decision: “Do not salt” (0) or “Salt”
(1). Consistent with prior work, we used these predictions to calcu-
late the deviations from optimal crossover temperatures [PPKH21].
These calculations accounted for variations between distributions,
as they were based on the distance from the mean of the distribution
to the optimal crossover temperature for each distribution.

We compared models using an ANOVA test for model selection.
The optimal model (p = 0.014) included a random effect of partic-
ipant and fixed effects of the difference between the average tem-
perature and the optimal crossover, and the mode of information.

Table 3 illustrates the differences from the optimal crossover
temperature. For speech and text stimuli, people were more likely
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to be risky than conservative, indicated by the negative values in
each cell, and vice versa for visualization stimuli. Perfectly opti-
mal decision-making would result in a value of 0.

We found partial support for H1a. Visualization forecasts had a
crossover temperature closer to optimal than speech, resulting from
an increased likelihood of salting the roads (2.7 - 7.6x more likely,
p = 0.004). There was a minor difference between text and speech,
with text decisions being more likely to salt (1.6 - 4.6x more likely,
p = 0.055). There was no difference between text and visualiza-
tion (p = 0.324). Including precision did not improve model per-
formance, so we do not find support for H1b. The crossover tem-
perature pattern was similar to the binary salting decisions.

Table 3: Difference from optimal crossover temperature. Darker
gray indicates a more optimal crossover temperature.

Concrete Fuzzy
Speech −0.517 −0.404

Text −0.151 −0.038

Visualization 0.026 0.139

6.2.2. H2: Decision Rationality

The relatively close match of crossover temperatures to optimal val-
ues suggests a strong pattern of rational decision-making. Partici-
pants’ decisions were grouped into three categories: rational, con-
servative, or risky. Conservative decisions salted the roads despite
the probability of freezing less than 33%. Risky decisions did not
salt despite the probability of freezing greater than 33%. We exam-
ined H2a and H2b about decision rationality using χ

2 tests.

Decisions based on visualization forecasts were more often ratio-
nal compared to the more risky decisions based on speech forecasts,
providing partial support for H2a (χ2 = 30.1, p < 0.01), as de-
cisions with text forecasts exhibited intermediate rationality. H2b
was not supported (χ2 = 1.16, p = 0.559), similar to with results
from H1. Figure 1 shows the decision types by condition.

Slightly higher riskiness 
for Speech decisions

Similar rationality between 
Text and Visualization

0.88

0.93

0.93

0.94

Figure 1: Proportion of decision types for each condition in Exper-
iment 1. Overall, decisions were mostly rational. Speech was the
least rational mode, with a greater proportion of risky decisions.

6.2.3. H3: Decision Confidence

Participant confidence ratings are shown in Figure 2. We compared
relevant models using an ANOVA. The optimal model (p = 0.014)
included a random effect for participant and fixed effects of the
difference between mean temperature and the optimal crossover,
decision rationality, and mode of information. Including precision
did not improve model performance; we did not find support for
H3b. We found partial support for H3a - visualization forecasts
produced higher confidence ratings compared to text (p = 0.005)
by 7-15%. There was no notable difference between speech and
text (p = 0.131) nor speech and visualization (p = 0.188).

Confidence lower 
for text forecasts

Figure 2: Experiment 1 confidence ratings ranged from 50 to 100.
Confidence was lower for text than for visualization forecasts.

6.2.4. H4: Trust in Forecast

Finally, we conducted an analysis of trust ratings. We used the
same ANOVA process to select the optimal model. The final model
(p = 0.003) included the rationality of the decision and the mode
of the forecast. Precision (concrete vs. fuzzy) did not significantly
improve the model (p = 0.984), so it was not included as a factor.
Thus, we did not find support for H4b. The results of this model
contradicted H4a: speech forecasts were the most trusted, with 9-
17% higher ratings than text forecasts (p < 0.01) and 6-14% higher
ratings than visualization forecasts (p = 0.013).

Trust higher for 
speech forecasts Speech

Text

Visualization

Figure 3: Experiment 1 trust ratings. Participants trusted speech
the most in comparison to both text and visualization.
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6.3. Discussion

The findings of this study offer insights into how participants inter-
pret uncertain information presented in different modes.

High trust in speech. Speech forecasts received the highest trust
ratings (Figure 3); speech also led to a decreased likelihood to salt
the roads and thus riskier decisions than visualizations. This com-
bination of results presents a complex trade-off: while speech was
perceived as more trustworthy, it did not guide participants as ac-
curately as other modes. When supported by other modes, speech
may improve trust without sacrificing decision-making.

Lower confidence with text. Text forecasts were a strong mode
for conveying outcomes and uncertainty. Decisions made using text
were on par with visualizations in terms of crossover temperature
(Table 3) and rationality (Figure 1). However, participants were less
confident with text-based forecasts than with visualizations. Given
that text can act as a strong support to decision-making, it may be
best used when integrated with other communicative mediums.

7. Experiment 2: Effect of Mode Design Factors on
Uncertainty Decision-making

We aimed to further explore variations within each mode to better
encompass the design space outlined in Section 4. In Experiment
2, we asked - RQ2: How does decision-making change when signs
of uncertainty are intensified within each mode of communication?

7.1. Hypotheses

Experiment 2 investigated the same decision dimensions described
in Section 5.3. We compared precision levels of stimuli within each
mode. Hypotheses are based on trends observed in Experiment 1.

Determining crossover temperature. H5a-b: Crossover tempera-
ture is closer to optimal as (a) speech and (b) text forecasts increase
in fuzziness. H5c: Crossover temperature is further from optimal as
visualization forecasts increase in fuzziness.

Decision rationality. H6a-b: Decisions are more frequently ratio-
nal as (a) speech and (b) text forecasts increase in fuzziness. H6c:
Decisions are less frequently rational as visualization forecasts in-
crease in fuzziness.

Decision confidence. H7a-c: Confidence in the decision increases
as all three modes increase in fuzziness.

Trust in forecast. H8a-c: Trust in the forecast decreases all three
modes increase in fuzziness.

7.2. Results

As in Experiment 1, participants generally performed well at the
task, with $1,737 remaining on average. Most participants played
the speech stimuli only once (79% of trials). Figures for rationality,
confidence, and trust can be found in supplemental materials.

7.2.1. H5: Determining Crossover Temperature

As in Experiment 1, we used ANOVA for model selection. Includ-
ing precision as a factor did not improve model performance for

the speech (p = 0.957), text (p = 0.884), or visualization models
(p = 0.133). We did not find support for an effect of precision on
the likelihood of salting and crossover temperatures (H5a-c).

Participants make riskier decisions in this experiment than in Ex-
periment 1, as almost all crossover temperatures were positive (Ta-
ble 4). This may be related to the differences in the participant pool
or specific distributions, as they differed from Experiment 1. Addi-
tionally, decisions were closer to optimal with speech forecasts than
in the prior experiment, especially in comparison to text forecasts.

7.2.2. H6: Decision Rationality

Decisions were again categorized as rational, conservative, or risky
and evaluated using χ

2 tests. There were no significant differ-
ences in the rationality of decisions based on precision for speech
(χ2 = 4.07, p = 0.850) or text stimuli (χ2 = 5.40, p = 0.714); there
was no support for H6a-b. However, there was a significant effect
of precision on rationality with visualization stimuli (χ2 = 15.9,
p = 0.0443). Participants made more conservative decisions in the
somewhat fuzzy condition (density plot with gradient) than in the
most concrete condition (quantile dot plot). However, there was no
consistent effect of precision, providing unclear support for H6a.

7.2.3. H7: Decision Confidence

As in Experiment 1, we examined participants’ confidence in their
decisions. We used ANOVA testing for model selection; Including
precision as a factor did not improve model performance for the
speech (p = 0.656), text (p = 0.244), or visualization model (p =
0.509). As such, we did not find support for H7a-c. We did not find
a connection between decision confidence and forecast fuzziness.

7.2.4. H8: Trust in Forecast

Finally, we conducted an analysis of participants’ trust ratings for
the forecast. Precision did not significantly improve model perfor-
mance for speech (p = 0.133) or visualization (p = 0.080); we did
not find support for H8a or H8c. For text stimuli, the best model
(p = 0.012) included decision rationality and stimulus precision.
Most concrete was the most trusted, while most fuzzy was less
trusted than other variants. While the presence of hedge words in-
fluenced trust, there was no evidence for a continuous pattern based
on the hedge frequency. However, emphasizing these hedge words
by italicizing them decreased trust. This finding is contrary to H8b.

7.3. Effects of Mode

The Experiment 1 conditions were also present in Experiment 2, so
we ran the analyses from Experiment 1 on the Experiment 2 data to
test the consistency of findings across the experiments. We consider
concrete and fuzzy categories from Experiment 1; results largely
support our initial findings, with variation in decision quality.

We did not find that participants were less likely to apply salt
with speech forecasts than with text (p = 0.209) or visualizations
(p = 0.884). Likewise, we did not find that speech led to riskier
decision-making (χ2 = 7.00, p = 0.136). We did observe a differ-
ence by precision; fuzzy forecasts across modes led to more con-
servative decisions than concrete (χ2 = 7.22, p = 0.027).
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Table 4: Difference from optimal crossover temperature. Darker gray indicates a more optimal crossover temperature.

Most concrete Somewhat concrete Mixed Somewhat fuzzy Most fuzzy
Speech 0.054 0.029 −0.011 0.089 0.113

Text 0.281 0.439 0.380 0.338 0.367

Visualization −0.015 0.148 0.110 0.312 0.209

We again found a lower confidence level for text, this time
in comparison to speech (p = 0.002) rather than visualization.
(p = 0.186). Despite relatively similar decision quality, text again
received lower confidence ratings. We also found that speech fore-
casts had higher trust ratings than visualization (p = 0.043).

7.4. Discussion

When comparing the decisions made with these variants within
each mode, we found little effect of fuzziness. There was some
effect of hedging on trust and a connection between visualization
fuzziness and conservative decision-making. However, these re-
sults were not consistent across variants and did not provide a clear
effect of precision. These results may reflect a true lack of effect of
precision on decision-making; they may also be due to the selected
manipulations of fuzziness; more extreme variants (e.g., significant
pitch changes) may result in different effects. We constrained our
stimuli set to realistic variants for ecological validity.

Between the two experiments, we found that, despite similar suc-
cess at the task, participants were riskier in Experiment 1 and more
conservative in Experiment 2. This may explain some of the differ-
ences between the results for each study; the impact of fuzziness
may vary based on how participants were approaching the task.
However, the findings in trust and confidence were consistent.

8. Discussion and Future Work

Our exploration of speech, text, and visualization for conveying
data uncertainty revealed several variations in decision-making.

RQ1: Comparison of Modes - How does the mode of informa-
tion presentation affect decision-making with uncertain data? Vi-
sualization and text forecasts supported rational decision-making,
while speech introduced a slightly increased level of risk. Deci-
sions using text received lower confidence ratings than visualiza-
tions. Speech received higher trust ratings than the other modes.

RQ2: Comparison of Precision - How does decision-making
change when indicators of uncertainty are intensified within each
mode of communication? Increasing indicators of uncertainty did
not have a measurable impact on decisions. The confidence and
trust findings from Experiment 1 were supported in Experiment 2.

8.1. Limitations and Future Directions

Explore multimodal representations. In this work, we uncov-
ered key trade-offs for individual modes. Speech representations
can lead to higher levels of trust but may also increase irrational
decision-making. Text representations provide support for rational

decisions but lower confidence in these decisions. Visualizations
are useful for decision-making overall but can be difficult to inter-
pret and require additional explanation. While we did not investi-
gate multimodal representations, our results suggest a need for fur-
ther research on how people make decisions when presented with
uncertainty data in multimodal contexts.

Expand the design space. The primary focus of our work was to
understand the impact of different modes on the perception of data
uncertainty. By keeping elements like visualization style, font, and
speaker characteristics constant, the study aimed to isolate the ef-
fects of the mode of information itself. Exploring additional ele-
ments of each mode would substantially increase the complexity of
the study design space and is outside the scope of our study. Fu-
ture research could explore how additional design factors such as
the speaker’s (perceived) gender or accent [Gil70, MR77, SRG85]
might affect the perception of uncertainty.

Explore additional uncertainty tasks. Our work considered one
type of decision-making task as described in [PCRHS18]. While
other work in uncertainty has explored other kinds of decisions
(e.g., transportation [KKHM16]), these studies typically examine
only one mode of information rather than comparing different rep-
resentations. Future studies could diversify scenarios to include
personal experiences with related activities, such as living in cold
climates or financial decisions (e.g., funding a startup) to better un-
derstand how modes affect different categories of decision-making.

Supporting accessibility. Future research should address how to
support accessibility when designing multimodal interfaces for data
uncertainty. While the current study did not specifically delve into
evaluation based on accessibility, designing equitable interfaces is
an important research direction to consider and one that these find-
ings support; accessible interfaces will provide flexibility for users
to choose modes that best align with their abilities and preferences.

9. Conclusion

Effectively communicating and understanding data uncertainty is
essential for making everyday decisions and in domains such as fi-
nance, healthcare, and policy-making. This work explores how dif-
ferent modes - speech, text, and visualization, can be used to con-
vey uncertainty. From hedge words and prosody variants to quan-
tile dot and density plots, we explore a design space within each
mode. Through two crowdsourced studies, we identify how the
mode of information influences decision-making and trust when
reasoning with uncertain data. While visualization and text best
support decision-making, users found speech more trustworthy and
had lower confidence in decisions made with text. These findings
suggest future research directions that explore a more nuanced ap-
proach to uncertainty communication.
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